Visual Tracking via Adaptive Tracker Selection with Multiple Features

نویسندگان

  • Ju Hong Yoon
  • Du Yong Kim
  • Kuk-Jin Yoon
چکیده

In this paper, a robust visual tracking method is proposed to track an object in dynamic conditions that include motion blur, illumination changes, pose variations, and occlusions. To cope with these challenges, multiple trackers with different feature descriptors are utilized, and each of which shows different level of robustness to certain changes in an object’s appearance. To fuse these independent trackers, we propose two configurations, tracker selection and interaction. The tracker interaction is achieved based on a transition probability matrix (TPM) in a probabilistic manner. The tracker selection extracts one tracking result from among multiple tracker outputs by choosing the tracker that has the highest tracker probability. According to various changes in an object’s appearance, the TPM and tracker probability are updated in a recursive Bayesian form by evaluating each tracker’s reliability, which is measured by a robust tracker likelihood function (TLF). When the tracking in each frame is completed, the estimated object’s state is obtained and fed into the reference update via the proposed learning strategy, which retains the robustness and adaptability of the TLF and multiple trackers. The experimental results demonstrate that our proposed method is robust in various benchmark scenarios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-Time and Robust Visual Tracking

Visual tracking has been extensively studied because of its importance in practical applications such as visual surveillance, human computer interaction, traffic monitoring, to name a few. Despite extensive research in this topic with demonstrated success, it is still a very challenging task to build a robust and efficient tracking system to deal with various appearance changes caused by pose v...

متن کامل

Visual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot

The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...

متن کامل

Object Tracking via Dynamic Feature Selection Processes

We propose an optimized visual tracking algorithm based on the real-time selection of locally and temporally discriminative features. A novel feature selection mechanism is embedded in the Adaptive Color Names [2] (ACT) tracking system that adaptively selects the top-ranked discriminative features for tracking. The Dynamic Feature Selection Tracker (DFST) provides a significant gain in accuracy...

متن کامل

Robust visual tracking using feature selection

Visual tracking has become a very important component in computer vision, but achieving a robust, reliable and real time tracking remains a real challenge. In order to improve the actual state-of-the-art, we choose to study and improve one of the most performing adaptive tracker by detection. We selected Struck [27] for this quality performance and his low computational cost that makes it real ...

متن کامل

Robust Tracking with and Beyond Visible Spectrum: A Four-Layer Data Fusion Framework

Developing robust visual tracking algorithms for real-world applications is still a major challenge today. In this paper,we focus on robust object tracking with multiple spectrum imaging sensors. We propose a four-layer probabilistic fusion framework for visual tracking with and beyond visible spectrum imaging sensors. The framework consists of four different layers of a bottom-up fusion proces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012